

Silicon Schottky Barrier Diode

Features

- High surge capability
- · Low forward voltage drop
- Small surface mounting type
- Ideal for automated placement
- Ultrafast reverse recovery time
- Low power losses, high efficiency

Applications

- Low Voltage
- Free Wheeling
- Switching circuit
- High-Frequency Inverters

Mechanical Characteristics

• Package: SOD-523

• Marking Information: See Belo

• Case Material: "Green" Molding Compound

• UL Flammability Classification Rating 94V-0

• Terminal Connections: See Diagram Below

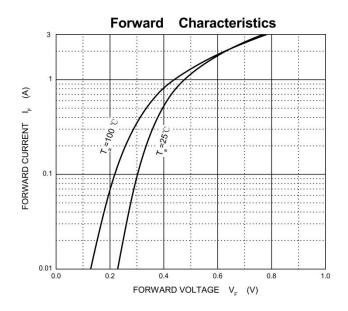
Marking: SL

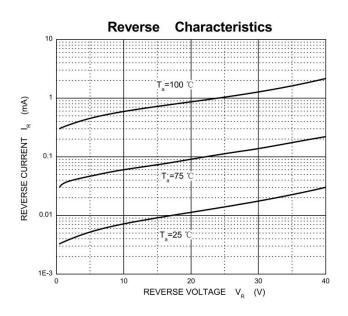
SOD-523

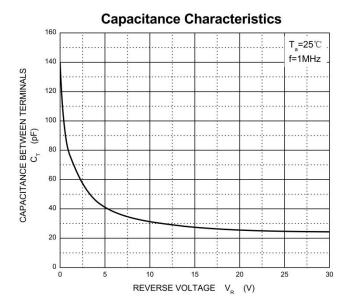
Schematic Diagram

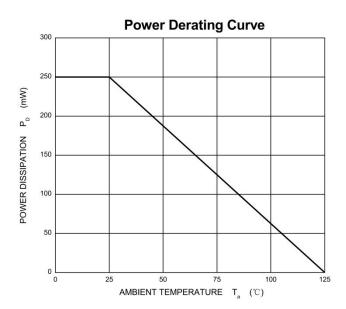
Description

SKY diodes is made of the principle of metal- semiconductor junction formed by the contact between metal and semiconductor .Therefore, SKY is also known as metal-semiconductor (contact) diode or surface barrier diode, which is a hot carrier diode

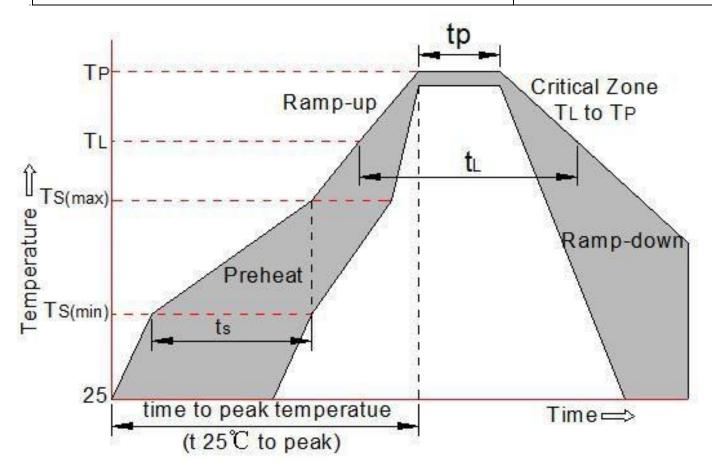

Absolute Maximum Ratings (TA=25°C unless otherwise noted)			
Parameter	Symbol	Limit	Unit
Non-repetitive peak reverse voltage	V _{RM}	40	V
Peak Repetitive Peak Reverse Voltage	V_{RRM}	40	V
Working Peak Reverse Voltage	V _{RWM}	40	V
DC Blocking Voltage	V _R	40	V
RMS reverse voltage	V _{R(RMS)}	28	V
Average rectified output current	Io	1	А
Non-repetitive Peak Forward Surge Current@t=8.3ms	I _{FSM}	5	А
Power Dissipation	P_{D}	250	mW
Thermal Resistance Junction to Ambient	$R_{\theta JA}$	400	°C/W
Junction temperature	TJ	125	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C


Electrical Specifications(TA=25°C unless otherwise noted)						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Reverse Breakdown Voltage	V_{BR}	I _R = 1mA	40			V
Reverse Leakage Current	I _R	V _R = 40V			1	mA
	V _F	I _F = 0.5A			0.38	V
Forward Voltage		I _F = 1.0A			0.6	٧
Total Capacitance	Ст	V _R = 4V, f = 1.0MHz			120	pF

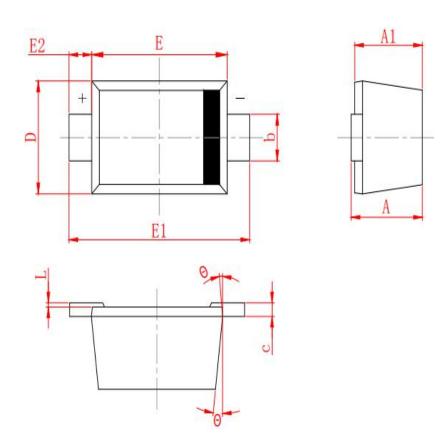



Ratings and Characteristics Curves

(TA = 25°C unless otherwise noted)



Soldering Parameters


Reflow Condition		Pb - Free assembly (see as bellow)	
	-Temperature Min (T _{s(min)})	+150 °C	
Pre Heat	-Temperature Max(T s _(max))	+200 °C	
. To Front	-Time (Min to Max) (ts)	60 -180 secs.	
Average ra	amp up rate (Liquid us Temp (T L) to peak)	3 °C /sec. Max	
	Ts(maxtp T L- Ramp -up Rate	3 °C /sec. Max	
	-Temperature(T L) (Liquid us)	+217 °C	
Reflow	-Temperature(t L)	60 -150 secs.	
	Peak Temp (T p)	+260(+0/ -5) ℃	
Tin	ne within 5 °C of actual Peak Temp (tp)	30 secs. Max	
	Ramp -down Rate	6℃/sec. Max	
	Time 25 °C to Peak Temp (T P)	8 min. Max	
Do not exceed		+260 °C	

Package Outline Dimensions in inches (millimeters)

SYMBOL	MILLIMETER		
	MIN	MAX	
A	0. 530	0. 730	
A1	0. 500	0.700	
b	0. 280	0. 380	
c	0.080	0. 150	
D	0.750	0.850	
E	1. 100	1. 300	
E1	1.500	1. 700	
E2	0. 200 REF		
L	0.010	0. 070	
θ	7° REF		

Revision History

Document Version	Date of release	Description of changes
Rev.A	2022.05.10	First issue

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Good-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page.

(http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.